5 1 Eigenvalues And Eigenvectors Mathematics Libretexts

Leo Migdal
-
5 1 eigenvalues and eigenvectors mathematics libretexts

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) What is the asymptotic behavior of this system? What will the rabbit population look like in 100 years?

A simple example is that an eigenvector does not change direction in a transformation: For a square matrix A, an Eigenvector and Eigenvalue make this equation true: Let's do some matrix multiplies to see if that is true. Notice how we multiply a matrix by a vector and get the same result as when we multiply a scalar (just a number) by that vector. We start by finding the eigenvalue. We know this equation must be true:

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

People Also Search

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#...

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) What is the asymptotic behavior of this system? What will the rabbit population look like in 100 years?

A Simple Example Is That An Eigenvector Does Not Change

A simple example is that an eigenvector does not change direction in a transformation: For a square matrix A, an Eigenvector and Eigenvalue make this equation true: Let's do some matrix multiplies to see if that is true. Notice how we multiply a matrix by a vector and get the same result as when we multiply a scalar (just a number) by that vector. We start by finding the eigenvalue. We know this e...

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \)