5 1 Eigenvalues And Eigenvectors Mathematics Libretexts
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) What is the asymptotic behavior of this system? What will the rabbit population look like in 100 years?
A simple example is that an eigenvector does not change direction in a transformation: For a square matrix A, an Eigenvector and Eigenvalue make this equation true: Let's do some matrix multiplies to see if that is true. Notice how we multiply a matrix by a vector and get the same result as when we multiply a scalar (just a number) by that vector. We start by finding the eigenvalue. We know this equation must be true:
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \)
People Also Search
- 5.1: Eigenvalues and Eigenvectors - Mathematics LibreTexts
- PDF 5.1 Eigenvalues and Eigenvectors - math.uh.edu
- PDF 1 Eigenvalues and Eigenvectors - people.math.harvard.edu
- PDF MTHSC 3110 Section 5.1 Eigenvalues and Eigenvectors
- 5: Eigenvalues and Eigenvectors - Mathematics LibreTexts
- Eigenvalues and Eigenvectors - gatech.edu
- PDF Chapter 5: Eigenvalues and Eigenvectors §5.1 Eigenvalues and Eigenvectors
- PDF Math 2331 Linear Algebra - 5.1 Eigenvectors & Eigenvalues - UH
- Eigenvector and Eigenvalue - Math is Fun
- 6: Eigenvalues and Eigenvectors - Mathematics LibreTexts
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#...
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \) What is the asymptotic behavior of this system? What will the rabbit population look like in 100 years?
A Simple Example Is That An Eigenvector Does Not Change
A simple example is that an eigenvector does not change direction in a transformation: For a square matrix A, an Eigenvector and Eigenvalue make this equation true: Let's do some matrix multiplies to see if that is true. Notice how we multiply a matrix by a vector and get the same result as when we multiply a scalar (just a number) by that vector. We start by finding the eigenvalue. We know this e...
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \) \( \newcommand{\dsum}{\displaystyle\sum\limits} \) \( \newcommand{\dint}{\displaystyle\int\limits} \) \( \newcommand{\dlim}{\displaystyle\lim\limits} \)