Optimizing Deep Learning With Learning Rate Schedulers
Sarah Lee AI generated Llama-4-Maverick-17B-128E-Instruct-FP8 8 min read · June 14, 2025 Deep learning models have revolutionized the field of artificial intelligence, achieving state-of-the-art results in various tasks such as image classification, natural language processing, and speech recognition. However, training these models can be a challenging task, requiring careful tuning of hyperparameters to achieve optimal performance. One crucial hyperparameter that significantly impacts the training process is the learning rate. In this article, we will explore the concept of learning rate schedulers and their role in optimizing deep learning models. A learning rate scheduler is a technique used to adjust the learning rate during the training process.
The learning rate determines the step size of each update in the gradient descent algorithm, and adjusting it can significantly impact the convergence of the model. In this section, we will discuss how to implement learning rate schedulers in popular deep learning frameworks such as PyTorch, TensorFlow, and Keras. PyTorch provides a variety of learning rate schedulers through its torch.optim.lr_scheduler module. Some of the most commonly used schedulers include: Here is an example of how to use the StepLR scheduler in PyTorch: In the realm of deep learning, PyTorch stands as a beacon, illuminating the path for researchers and practitioners to traverse the complex landscapes of artificial intelligence.
Its dynamic computational graph and user-friendly interface have solidified its position as a preferred framework for developing neural networks. As we delve into the nuances of model training, one essential aspect that demands meticulous attention is the learning rate. To navigate the fluctuating terrains of optimization effectively, PyTorch introduces a potent ally—the learning rate scheduler. This article aims to demystify the PyTorch learning rate scheduler, providing insights into its syntax, parameters, and indispensable role in enhancing the efficiency and efficacy of model training. PyTorch, an open-source machine learning library, has gained immense popularity for its dynamic computation graph and ease of use. Developed by Facebook's AI Research lab (FAIR), PyTorch has become a go-to framework for building and training deep learning models.
Its flexibility and dynamic nature make it particularly well-suited for research and experimentation, allowing practitioners to iterate swiftly and explore innovative approaches in the ever-evolving field of artificial intelligence. At the heart of effective model training lies the learning rate—a hyperparameter crucial for controlling the step size during optimization. PyTorch provides a sophisticated mechanism, known as the learning rate scheduler, to dynamically adjust this hyperparameter as the training progresses. The syntax for incorporating a learning rate scheduler into your PyTorch training pipeline is both intuitive and flexible. At its core, the scheduler is integrated into the optimizer, working hand in hand to regulate the learning rate based on predefined policies. The typical syntax for implementing a learning rate scheduler involves instantiating an optimizer and a scheduler, then stepping through epochs or batches, updating the learning rate accordingly.
The versatility of the scheduler is reflected in its ability to accommodate various parameters, allowing practitioners to tailor its behavior to meet specific training requirements. The importance of learning rate schedulers becomes evident when considering the dynamic nature of model training. As models traverse complex loss landscapes, a fixed learning rate may hinder convergence or cause overshooting. Learning rate schedulers address this challenge by adapting the learning rate based on the model's performance during training. This adaptability is crucial for avoiding divergence, accelerating convergence, and facilitating the discovery of optimal model parameters. The provided test accuracy of approximately 95.6% suggests that the trained neural network model performs well on the test set.
A Gentle Introduction to Learning Rate SchedulersImage by Author | ChatGPT Ever wondered why your neural network seems to get stuck during training, or why it starts strong but fails to reach its full potential? The culprit might be your learning rate – arguably one of the most important hyperparameters in machine learning. While a fixed learning rate can work, it often leads to suboptimal results. Learning rate schedulers offer a more dynamic approach by automatically adjusting the learning rate during training. In this article, you’ll discover five popular learning rate schedulers through clear visualizations and hands-on examples.
You’ll learn when to use each scheduler, see their behavior patterns, and understand how they can improve your model’s performance. We’ll start with the basics, explore sklearn’s approach versus deep learning requirements, then move to practical implementation using the MNIST dataset. By the end, you’ll have both the theoretical understanding and practical code to start using learning rate schedulers in your own projects. Imagine you’re hiking down a mountain in thick fog, trying to reach the valley. The learning rate is like your step size – take steps too large, and you might overshoot the valley or bounce between mountainsides. Take steps too small, and you’ll move painfully slowly, possibly getting stuck on a ledge before reaching the bottom.
When training neural networks, one of the most critical hyperparameters is the learning rate (η). It controls how much the model updates its parameters in response to the computed gradient during optimization. Choosing the right learning rate is crucial for achieving optimal model performance, as it directly affects convergence speed, stability, and the generalization ability of the network. The learning rate determines how quickly or slowly a neural network learns from data. It plays a key role in finding the optimal set of weights that minimize the loss function. A well-chosen learning rate ensures:
Choosing an inappropriate learning rate can lead to several issues: The learning rate (η) is a fundamental hyperparameter in gradient-based optimization methods like Stochastic Gradient Descent (SGD) and its variants. It determines the step size in updating the model parameters (θ) during training. The standard gradient descent algorithm updates model parameters using the following formula: The learning rate is arguably the most critical hyperparameter in deep learning training, directly influencing how quickly and effectively your neural network converges to optimal solutions. While many practitioners start with a fixed learning rate, implementing dynamic learning rate schedules can dramatically improve model performance, reduce training time, and prevent common optimization pitfalls.
This comprehensive guide explores the fundamental concepts, popular scheduling strategies, and practical implementation considerations for learning rate schedules in deep learning training. Before diving into scheduling strategies, it’s essential to understand why the learning rate matters so much in neural network optimization. The learning rate determines the step size during gradient descent, controlling how much the model’s weights change with each training iteration. A learning rate that’s too high can cause the optimizer to overshoot optimal solutions, leading to unstable training or divergence. Conversely, a learning rate that’s too low results in painfully slow convergence and may trap the model in local minima. The challenge lies in finding the optimal learning rate, which often changes throughout the training process.
Early in training, when the model is far from optimal solutions, a higher learning rate can accelerate progress. As training progresses and the model approaches better solutions, a lower learning rate helps fine-tune the weights and achieve better convergence. This dynamic nature of optimal learning rates forms the foundation for learning rate scheduling. Step decay represents one of the most straightforward and widely-used learning rate scheduling techniques. This method reduces the learning rate by a predetermined factor at specific training epochs or steps. The typical implementation involves multiplying the current learning rate by a decay factor (commonly 0.1 or 0.5) every few epochs.
For example, you might start with a learning rate of 0.01 and reduce it by a factor of 10 every 30 epochs. This approach works particularly well for image classification tasks and has been successfully employed in training many landmark architectures like ResNet and VGG networks. �ȥb�,����y���� <�>�lmn�? Y�X�I�^�� �U2Q�W1U[Mh�MVGunWc� ���#��B�MA������.�}�Xd�=ff�c�ِ�=�1nE@ә�����v����3K&\�Ŧ��*`Ⱦ%!�G�b�F,m8�B'��{��m��{�P � )(L��ewO�bKF(%��H�f���ԥ��B�l���j�A ��s����W��u�ɭ��qr���q�FT�R��"�7�.�c�����Y����!��n9���}�=?�n����/��T���{�R��Ȅ�-�oGF��Zc�N�r���<�"l�I)�G ���MaFp��U���F~2s���7�o��w�����L�+�a���B�^�t�R�I;�6���%U7��d�;�ςׁ�4����D,�� |ݗ�SГ�������� Nm��3���ɨ7��L2�A.I�<��A�r�º�F7�:��Zw�z�d� ����[�B�}�*bOwp[�A5�����ͨ�sN�f��r>r���|=�f�%���+7�.k�Q��$t� �7� �=S�`�.�Y����.��|>����>|x�8p����+���bL#o�E:�d�R����7��c�2R'b�"���΄ Mg�Q��)a.-E���B!��[/�JKJ��_���2xl��o'����Z�_FT�L��x�j�%9�I)��r"�r:����Mx�������Q�)��!�������[:��Rϔ��s���C��~ b�Ґ�w��dz���~5ޭ��k�6��\ ܗ�UL�S$��'��ʎW/�ON�/�(�z��&��J�Y��B�]�� .-"�q�JLI�F��>��˹��]M 5�ʪe3*c���r�n�M�eXp��X�fb+=#*O� k�2d�H\���!k���4B ��ۜ9��I|F�� 8ֵ�A6�xI�lR�6c6-$�J� ����Hoh�seH�9�*p�lc��>8��E�/����B*���g�H�Wp��d� u�&#T7��I*�˰������hjF>�(���?��c��B/���ɟ��i�[�:�L^�+�Qk0I�����2c ��h���c��ȏ�[~�)��֖F���O��sf?��N ��{g��o����s ��7��{�nJuh���q�G�i��~pH�H��9BB{H��[���50g ̚3f����5���>��ś�{'��q����i=�z�9 )8 d��k Q�J(^1J= w�6����x�ʍ����m�+Ǣ���M2���"$ J}ݍ"[�ΰ#��_��y�յ��j�'�"j<�����\��`�m��ANw��C�-���/��&O���&�.ۅ]�Z诊���&C'����E]E�U��ch����t�%Y����o��˭�[��lj ��� � r�b��&;��>��l�dS���zd�� �cܳ&q�U���D��"�p��... �M����S��f��n���:'y�Q�{�~�RLÌ����ȣ7op���ˡLR�P@�$��(M�&�S��僿l���|�B=�*ؘ��4����������D�Z���!8��ρ�5��\��1�Q?��og�X��c�w�c�}K n��V$p����M��-�t�S���~$��g��\!W(f�P2�E�FB����� ��s �V3SFB�{��1A"���3��d|;Uyvbc������ܛ�����d����/���;-��A���c�D�ޱc��f~ݧ8��T�U �;��8Ԃ.���̴�Id�Ѐ���" 4 4פ�b��6r�^W)}���ѥչf^clK^� $ AH� �M�i�����vO#&�T��"�pK���/:v�a�X��i�c��,� �F��&*E�T������\��'�,c��a��u� ��n�X��҈v��Sm�~\(�� �˳(#��y1���q�R�^� �?���b�DlJB��$�cR*p:�%H"�#�|wm�={jߔ��}�m�RM!���U ��Ny�ɪ�j�^�Lu�뵭�t��-9�����M�����\,䙡���3��6Y�M�s�TL��q���O�UqZ'|f� ��'�Gl�Հ��f�]��?u�� ���^Vp�h���nQ�nS�y���d^Κ�l̀�4E��*xMmr5�ҵ����2Mh��H�3K�^"smػ�$�I*CnJ���}֘S[�N���S3���"L_W�j��t�} �n>���k��+���ӹ�� �QK^��O]/�W�Q���(�?�Tmԡ�j��U��B���pL3�Z%�T��f��X���q�>���ۛk�S4�G_�1P����"�b�:4��1�I1&K,�'��l*W,\�CM0��6����#Q^T�ࣿnoJ\�ځמ�L���F��qN����& ]��R��Y�E yR�~>E�(QO��ͫ{_���}�;[I �r ���v`��-�����'H����8�abD"���ɫ2X�ű]�vQ� 7ܰ%y~��_���ݻw3���yV�����+-�s�X�3�L��$;� ��u�P|8`�o˟�"YA�%0JҠʲ$�k�:w�\�$��0�T%y�Q���( w[�F�H��>��o U_<�� ���^�{B�[�V 0F���%�D��,�)��)��x]�!�����F��c����?����:>����#����l��&�AMG���dzV���xp� ���I�/{P�/���������{ϣ#��jJB;!�ԯ�֊j;�K]= lH��t�)(�%@��@�"�D����+��:,�9� �w��C�E��d4��_�d6��4� zrk�ź@�+�ʫ7�uG�[��n6_��Pp��A���b�:C�U�J Ϣ=Dl|H�i;l2�D�0�,���]��U1���Rс���H�3�r}��T�QR\IJˁ͔�ܮ�l%��ֻ�c��... �b!D��n�vU.L(Y*�N�"Y��l�'P�� �xc���"��#4���\��zB�����8.�7g�ۂl��Q��.r��@]r�N��-�ģ�@"��cepɇ�/�/ ��,�<����7.��^�o�E��_������ܴ��#�q���A�,�Q��C��t���`A[Ii�9UIh��\��Z�0�+���́�?������`!p*1-[�;�e��~�=�b����v���gRU��-w�-_]��m�IIS��w�*���Q�i��⳥�jr�w\dJ���3z3��y�LO�Y�Z���`�W��'��6���"�)� ���6��6 ���&ɛڅW�ӻ$�;����~�m�u��WG}��5a�����r] ^��I�2G��1�`�z�QD ��&T�Y2On�) b�|��v�c�1ƶ��=�� �i��� �~�Z厦7���������@�ƴ������h�Ba�W^y�k�-�ܢR����K���!
? ��Q��`s$rlF$~�SYE���魥-p�sn��qpf!��Ԕp���l8�\~R��7��������`"d �_��%�4�%�+Ŭ!$#�4��lU-��'�}�VU�:ڃD�)�4ρ�?%?�Xc>e�����V����BF]5Mc��~ŵ��+Q��1�@�;H�+��}�yl�]��T0>�� ��m 腄tW���z0���� �6H�)r_�9»�g������� `M�������я�:����� (m8a��QeS����N� ��܇2��f ��R�\0�t&��z��әrG�^���,i���0K�*�۸X��jXӘS���}�g��xm��< /�ɕ[�/�9X�� bmj��!��w�(ƻ7�V�Mߟ:���!� �˗�7�P&I���β�4�f�@44�.��7�����Ol������i��J- ��I<�����^�#Ѳ9�c�: � ilA����:��4�գ��Ba���4y&fx��)��p�n?V�-#�o '~��9�o7�l�oO�@Zfl�f�?l�����A�����!���x��3��tYd�Ĭڒ�;� �L�rS ��O��T{�s�I�׆X*( :c�� J ��������UW]EaM���[�'�CaM���'�F�<���ZВE6ʨ�2���1��2����J!O5����8JJ4���B����n�4�_�qje��k"��X<�'��a��� ��������ͤf�.�~�N��$g ���x]���- �^<�+輡�b_N�f |���͔�S-O��YE�gӂ����s4���Xg|���;�-��Aޭw��m �b�\㈷1w�]��ou:��1RyG\�H�B\L]� �.�6]��.�Dq��H7���B�s�(����ʪdZ���X��G� �"W"Ru������"[*�R,.f�& ���~�"彨˖O��q�ԣ��/�e��-m�l^I?�!��Q���Df��*�/�I�Hh�*ܯ͘>��/��g'RM��p���W��q �G�� �� ��,��>k#���o�(�[P` >3���F���Ľ��a���IT��O ߱�"Mxb�)#=�d�쇲���ٴ�2Xl�O@�/W�... ,�5��eͥR삏��,�V�U�n�l����uILq����JK�R1ƥ�n����7j�\F���*�^�x֥��/+�?��tk�LJ_8���7��/�g���.ݔ]=jU ��=Fq�^pB��2���9�~���p!�`�����EՠEJsjy��3B������)�z�"�>j�*�F��R �vd�P�G���Z�P�c ��;#�p��P-��*������=�����B{��IQyg�~� �<3o 0�À���t�����^e_XԻ�����L8#ˈUK��+=�� �u�,I\Q�7n $C)�����r��n��V�*ڷoظ9��������o���ƨ~tt����}�k��:hkʧbPq&�]b\�$W�D��k0"C�r5�#y��Z���a�&l���"6)$��J�"�9�!�� p!CP� ��l2tH.�`S��(P�MڣA���t�:X����\KL7a]� &�����6�&��P]�AF��˥<�2�%�K�z@�Ḗƀ�G�x�z�8�y��ɡa �gI �wY�,bjn�%~@����{obd�OE�Em�z�++�{]�T�����#�t�4�Y� ���b�Q�� �L���s��{��^� �琚�O-e������� �x� ����Z�gx���&��>|��^�d�eb�S�[�Vs>p.^�dž�̻M�D�|k��z�h֥�g��o�>qQQ���TO�iT�fC�5�a� �y2H1u�ܴ?h~�-�F1b����ж�~�aж�Sق����Lg��i8�7fS�L�a&S,�e��9J���T�Y�]���>ο]=�����P�9D��+���NR_ ��N�7�8�G?�QuV��v�ޭ���ǚT�x!�/銥�����z�!B,�J� Ӕ��7/��'��j����ߢ�{����%�U4���Xw����/���8�P:vx�"S�Lb<����T��-�7�]�$�a���ea����h(�b��Q��g6T�4��(�z}Ke"0�(�Q��̑iL螓����⤎�p���tUǎ��FX.Àii�8G�L��8ʤ���5��c�j�c�#�F`v��Zȥ>t��k ��pJ��E4)���v��f�P�Gv����\��/� ���lL��en\�H`��G�,W�e��J���0`����bg����.QSᤣK=b\����q,��h�O�ȼ�@�{���_Z/��h��c�P��D��L���ԭ?��c q%s�5p��;:�}u��o�3$u�(nS~y�@k�{�� ��k�����I�H��b?�f�Hg���7������q{"����H�Չ糲:ԃ+��M�A�K�}.2�x�.v��A)��7����h�氦�ᄏ������sT2���g>S}��mo�`M�x%�JBnF�q�%�½ �<ͬa�,#B���ID ��X�k W@n1B�'���5O �p&H Jd��[@uh_�n(�t��I�� �&����r�Y�W���W'~zt��#{?���;O���:�����y#��M9�A ��K�ҠK\��KH-u��B��`���`_7��7k#�s���L�ɝu�<&��Z��I�:�X���c�D|༠T/�����}�뵀^>��(q���T�9r�\z�R�ՂM����{<� e���~���3::��wKYC���)�h00��`ITEW����Z�)��9�'��'�υ�����'���x?D��Ye:>��t�xQ&Ǎ���c������0S�XS>���fD������MEE}��c=�P�|V�M�*L�Ǹ��k6b#g0���kB �Q�... �,QS2�؞�,� C �E50�e��`R�(諘��*sG���Szbp;� �[�%�}�8�`��?iW�Ζ~�tڡ��ֲ��X �M�J`��)��ٔ+5D1y�]�3�XZ-�֎ j�Ȑ]�!t�D�4-��N���m\��D��0�J�t��_h�M�.���xJ�k!�T�������+)��f�~A�%uE��L�PD�(�!��67��t��W�<�͆�7�5e2�k�����T�f1���<��/�XS&�'�]举�U���>~��5/��41 ��㍈� "P)��ik]M1S�1G� �,�А錼�T���#Z�������A�#� j��5�p4&��� d�p�h����������Ռi�u���I�k�pm��� �.$ǵ��j5��p�a��e6(�O�R}:_�_����?�q��Tй�����32/ A2N�W8�{�-衄�$}��uG�&�Pgp@k�h$�p�HNj� k��t��u��{I������!T������O�X��j*�g�0�r[�C�Pd���,K ��&#f��v��h&�F��[h�p��9����������ww=�"���y�E9s��0���Lw�(v��jR�I��o����,��1�O�=͊q��>fK�E#��,e� � _��X� ����&�\�7^#��ۥ��v?��Ŀ�}�W��MU� ��n��j�i �O�cw/���ܩo���_�ʼ������ԁs�Ů�܇>�⊺��d�Ւ�xMܶ�;6�)sy��f�N��A:�� �X&��~t����Sb�k��&|��HD���ʶ;���BK����O�>�H���<�Lvww_��$����?@��-�j��d�h�\�:͠*���ͭ1M�����)�<�)��/��? 9�qq��n���I�IǺr)��8&�Wʬ�2P3�NriN.��M�gS�lj�@��a���'�7e��~=��w$ï�V��g��� \���*�����C>0T��Jf�Z8kh+�@e0��Bo����h�g=T� ���aҡ�C m�_� P�+�X� ��#d.{���Q�bέ���0I�.K<ɦ���2h� j�[IJ��;�QTH%H�Գ3�iN���-��i���.�x�Ó��0 �m��2M�}f�bT�7*kǕ�e�����; }����-5�� ����|[�RM��r��pjA0:�f�宰�����04q}���S4��#� ٛ�oGU�l�:^|���mw峪6g��̴��Xp�JF�F�[ʂ���&��8���t®�b���d�zdo�^H:XF� fcy���lӌS�!�&��%�@�T��\(s��a�b,��b�Dȟ�_y�ڑ����k��HU㫖�iH�f1�a��'��v늦��|b�� �o����~�z�?I�㘂m��W�,t��0�Z��x���Z�Kp��R{I���kV���'P�x��Ę�!� 2"����c&���@�� �I$U����|�Phw��ѣG����/~��/�XS:�^�d�Y�+1 e�A=@��H!�ȵGj� ��,K�h �qh_&�M��B�ds��D�8���++��"�s�h얫^]�<9/}�mR7#�p�%S((�Ԍ��u��ŏ1ŻX�c"L��!ጔ1"�5�e� aM�B����X��bM���88�[�"Aq�)f���F4Ncɼ�WҚp`j���p�O��m�t� ��]_�:m1��ʽ��F�)�*�-���OL�Ђr�Ǜ��X�e��g�[�z~�k��d���__6����}�n�N���jD�咑 ¯��X���U�JEf �C�]j��3��� ���+���xʮ^��6��L�U�1w���P}�P��]fTX2u��~���7P�O;�͊�߂c�3K�lJ�S��G�r�4���-��nl_�b|s�(wS��g%㖟5�Aa�nHp����e}n����y��^��:7P����?г��jk�C��T���/x��X�[PᘪӔ�,ne����EԽ_vs%�8�1Aȱ�:aRk���j&�[ �L�[A��X*��Ġ���B_�>��C/����Mؕp]q��9^.���k����l��;w h��H$R"^w���N�|�G>���U?���z=�حf �&�-aţ���˕l�R�%�I�)��f�C�%�^n��&�1����/��R�tC�����;!����.ӏƟYt&"g7�9E�.���K,�� K�����d�`���������#����E�Hj����Yn{" �=ƕ7t��4\0�is} ��D=�l ��� [�"b�>iW�A�Q�� 2�#�)0M��|��fO�8u�Q�|������,O�,-�`8�NE��i�o380��K3Y�h.�&h� 5�������x�p1ЕRi5�̑!pA�³:lP�&W��;A�8���<����r���3$+���q�[�l���;���(u]���O� �z�u�tpE�;���T�F���j�%k�)��#K����gg��I�{�n�3H7X<̵��[|[�i�&T��... �O��� 6��@&i��p<�h&4 @� 5x\��ːIր$vF��d$��ho ��䋾xV卓����T&�"�{N���B|{�]���>\k�k r,�s�m�Ӽ1@��n9�k��y�A����0���C�6�\���3�: H���u���P*GV À�J�1o��^�>������4��sQ��ǰ�=��-�B�E�PkG�m�vTȶ��k �>���Oe��d��2(� ��T� ��B|�X�F�F�[�}�j���d���Oa��%��V��4L��k���. z9h��s��+H�p���2���l�m$_�Oؕd�LPH4�֎ j��.����;���p��6"�ir?9��v�}��-������ �i��١��_��^_IGP��5��v���}t#|�����q^��Q�n�Z��r7�*5o ,[�|[X` ����$vF��T:��Y#C�d ��#��~����9}�&��{キz�����_�B���O|��p�\�u/5XS1�%d_LIH�,A5��,�u�85��%6d�@r��<�_�&q�t����8�I�bqs��z�%�jT�T�-��$�É[�b��L���:[��%���:.�����F�&�X�T�O ��Z �RHD%l��jq���R�@u���fՅ^g&H+����y�e�� 7A9y\x[�{Ҏ琏g�lケ�y>Ł;��8}��ݒI�Ɵ��:y#��� W�y�v����L+�.��.Dl �9�㮉Rj6�]e�"��t� &�6�'+b�������-G����,�|�ٓ� �9l��/�3C�pR��O�mx������Cl*fW�uޤc�?5O�T����n�X���W�y(� �+����z;�̒Y�^�Yڅ�6��;����Z������@��О��gga�ǚ�}Ԫ��.��c�%BX&��g���\��!�3fS��/ʙ�K��·���� i����\z�C �o���ϠE�PYs( ���x�� �U��G�:�����U�zv��?^���E�y�R�gMbp���X��+�'��L2]ȣu��{�R�!f��m�U�4`� �F>�P�Zco����ɴC�S8Y�E���A�_�P��Đ@ ��:'r���L,�|���"M�8�[n�� d�p��{$Q"&L6�F�smu�X*F�y'䏚�nR�AI.-$������$S�X]���W1MBR(����Xrܘ>�K/��L|8z>��y��6��a���PQ;�5֔�*@I�4�`�bL�\F�DDIWț�y���ł�g���Rb��u���?U�u���O���l���oJ��)���bޱڜ&�8D�5K���������;>3��8�S��$V�U;v&Z�;���\�� nͩ����i�"[&�܀�K"�EO1� C����TZ�dzrw��%�(=p�Ŵ�������-�Jd[�o�䋡T�I��...
�r~3~����$���W���BΛ��r�:v� d�a� TB.# �YW� �cj L�yg���J��� ��]-�A%W���U�=�Y�Ӵ&�Uf� ����4�Z 8��礳�#��t?zH�! &��Bs� Ŧ���R4�>�ٔpɍ*�� �YF� �!C ~�k?�DVቑ:J*�S4�����=<���!�C�a��M�W4�!��B��IpL�*����L�I����I��SzXFlݵd�N �{�zv�٢�v �dn��rr-�B�G�j|�Ok>��L�c��(�8� ۂ���7^������)pQ�r,�Q��a�f�>�� �!��8dJ��.��k�ؘI<{���Z]� ��q��X�m�������J:" ���&�¬��y �^dhd~͗���I�eK�҅�/3_*Bma%�f�Q�tE�c�t�}gk-��.��q�ʜ[�`�b ��&�9P�9kӝZ�\�7C�$QkG� 5xd�b�[(i�eG M�?+v��*/]�7���f��ES`��cQJj'�r��)� H] �l����LS��2�˷�e��7Xq+�����Q�gV�_:�]j��t@Q��$��g �|1�/f �|�T(����R �kF�/�ڵd2y�M7�ѓO>Y��&��o��z���� ��[n�>|hhh�8^jL�[����q��Y!}@Ĥ�&&E�IQE�<����6�o��}������d��F�s�ſ.�W6jl��ejyediel ��,��ք���W�� �K���Ȱ�{H�E�������^�������[�l��+&ʄ��������F�u�W/kRH����>c���E����[~xI��&<8*�����|@��, W� x��S��3����I65H3����9���:#������[�>�#�> 1'���"��O"}HH�+X�fz��� �m�?���Qo<ؠ�'�9s\8�wN h"!��*]Z(� �0;\�J�97�g�H������+U7ܠ���'� �Uj`n�q�� 2do~��-@h?����HGX�Քк���qz��F}�̓m����3O�O��Z�W���r���wv>�f&7 �=��h]���ӻ��E�9�0��,�2�K�� _$��́C�&A... �e�An��3�(Xn����0��WP�k���Ք�>⧚��B�5��u6�ca2�id��i �n�˄����T��Z�c���[G� �u/�O�g��O�gR^f�A"����F��`M��N����N��W+@H�EuT��~��_!� ٛ��"�Yޒ�� ��!�9:T�4�61[�F%�Vؓ� ��M ���fr��+�1� '� [{:_�ų`��HAK�]��*<=���Sz�u�A|{xR�%�Օ*���DŽ 9^�]S(���'Iz�B�4�mX��W_]�?���P�����O�8�u/��k9 �M* ��X�ؤ��"zl���y} m�&��c 0�ѣeP�j��"�5c�M��`�� 8�.�hR ��$s����c +=\��Y\�Y^y�ـ�9��>��j#2����~� H6uQ�l�#�&H�V��p�[8:�O4�B�mDfіWN,�<��ߘM3ˇЗ�(�~b �����Ź2��k]����bM�3h���Q#����8�j��*�)���dD� �ԐHZ���Lo��hA"i�z��4(�ر�$�` gz����YZ�M8��&�X��Q i��~�I��R�Z��*��ڢ�cN���+Ø�{�9�%#�R�'Py� ���e��N�#HY�0M����p;:>'�ӿ�������e�m���1fSB�i���>�Bnu�k�b�xȝ�&�H�-6@� 5�5+K�P�!GS������jB@M/1 _ܿ�@to�tL���ŏ�8rL}�C��ٸDQ����7�绒�CO�t�8�x�Yr$ P|�ee�˒54Xэ���D�0� �4�����J����?'�^!�K� /���=����1!!,��Nbx�1 l�&Y�d˫,[�vK�4�fF�}ߧgz���ez������������U������ӳHI�w~gNwϭ[�nݮ�����}!s�*}�L��b��2y�/Ѥ�� ��=L���p:�" �g� ��#C�k�!�s/�� ��oU?��Oe��*��T�;��*���z$�@� ݫ@�J�%��ѰK... N ����j��Ls��t��jHT {(��\|I�'t�e�r��Ѱ�z�/�L�RYYBMM��|\.��]�����rT1J���8-�E�JT�De��J��z���t�4/`V�3��t�~v�����)0#�jS\�H�5���4��R�U��C��L`�g����-{' ?�V�遙���O��Ɂ�O���̨N�%��1�#�V�$��g�h�c�dy�˒# ���S�ԍg�h�#Cv{�v�����K ֤��x:hB� ݫ�H#�u�B���4���p��8(?�3O{���1-�#��6yV��W:���2���N)��/h�#C�<��h�t�8� +B��d�������T��QT �#B�J�2�y����ꏿ��d��3����[�0Q� ���M\�k�!����X"[(R�i���������|�/����P����#�<�BC<�I6�5lk�����ˏ����y_�җ�7ooo�>��j���˦���_/�9�v=n�[�҈�B-[���A� l3,���g�n9U� eQ��r,no ��DZף=�g9Qm��dP�i�� �|�w3��E�}v��9ի\�E�)���zEd�[�.j7��l�b�5�� ��P�b�kv�=�������cH�5ĵ�]}���'�p��xu�#j��cz:�3�M����zo�^B|)��3)ܺ.v����&z�VxM]k���<�8+(�0j��otP��o��� yXC���A��+�!�ۚ���.����w�!�4�:G2�$Sy�HQk~ ��|�̀�� �(0�@W����&ty���*Q`��� �r� �LS�e\�؟�a������5 � Cv#�<1W����g*�0�fr�e��a��<���O�e%��b#!�z�"��\��ˊ�I�2�Kǎ�ݟ��T�����V����rH!A��|4�~�IG�0 k�K���<#_��/��#L�մ�T�{Ȭ_�,\^����EQ��3�.��YzO#�����C.-�gi=Y�(��b�������2�U/��,24�k,�α�8� T,>�Ŗ 'I�Q�+:�������xjm�����x�7�����8�]O�|��� ~���&����fV�����0��7���{��/4/L�N �*��^�^��ii*p�K�sS0�fȔ�4Xn>n��ͧ Xa�ȡю��n�ю��x���t�/f">�Q�н� 3����z��U�C�L0�� ��1����1�E�����=���w����W�U5W����hao1Mh�#C�<��g�4 C1�� g h���32ψ_���(������3����woJ�]O ��Phj_vi0^�N���'��Y��X&�"... ����BF!+������V�b�@��G�m7��:q4�ĨS!w��Whz'�#a#��(��� ������ �8�]��O]v%� ��Y�yԥ���jo�,�ؕ#n���kD9At����,]����}�8�����sk�L��� N��⚁_�����Q��Z�+� ����� `MG�!�^���CS<����ٕ�0אS[�4��]��f�Y�n�����(�����A����Nk��뵫q+ �aD�(� 2��#k���${E����th�B^1���"�lR�)g ��髤��^%��ȌZe ���>��� D~ZWY� Ua��m q��@�D�X�Gd�:�������'~d�^nJb�2�d��ɦ���r2�H���$�����^�O�$d�E��jxA������B6�3�j��O�ژӼ�u�-��RSao���Aw�[npA;É��� 1K"��u_D!�����*��1�^�J�m��n����|5��mW �������r���鴮�� T�gy��w7�ʾ��ߚ��n��� �hl��?�'�r&� Z ��Ŭ�F�4���8-��T�z�:�DF�!�5糰=��P�0M�|�� N�/�،>�t5�g���ef<�a��𤑲 3"ۈ��i����}M� �X�����Ti�d$@c�䉹"�ĝ�#�T*�.�:D 1lN.��n��٠g���CI�dld&���$캯u�)z�V����#M3G=�M"frTtZ�f�V�X��Lj+����b�S,x�\�|��i/x�"��'���"w*� �i#�t�~���t�w�m`���lq������.�b�a���,��h� �kX�*yb��B⢓ӶWV_L�JF�.rF����sk.��/ͼ8c�b�B6Q-|ѫ�}�Cvד#[4}�U���Ys�E� ��16o�I.�/N�k �I��,w�O�h���;�;d���@v�^j�&��E2B� ݫ����Yt�v2�K=v�(��Ox����W����O�Q��{�~n��79m?��Y?�]�'<PXt���y��]M��}��B%[i�L6��T_��A�24���<��r`�P����a�[hX���6��0��� ��mH��v���7��h�<5�;ηw�=l�W�^�q%ǎ��ų���M@� � ������,.���}�h4F�2�NW�5��dj��.��sϵ��@ P�;�ӹ}/�X������8�˯^��(�-H1���_[^y� HĝZ��&������g�)Z��Al���VaM�=���F{�!�vW/�<��n����C�_&a�%�_&�-͗�&! :U*H-�������p��r��L�2��ss8�ðV��@�$�IID��o6�/����hZ�gt��iF�)S�Omɽ �P(jWl����*"B�u�*��tdc~�{��2��(�'���?^��ܔ����%�l�H+ S4Ӕd�E�?������5�P�=��J� W�2gTE+�8T��X�nl�i��"�]�dT�2_�ښf�r�H8S���WGw�[k�\�G�:�s4�5B�B"� 0$��k"MCU"M��u��})���Y�݆~�����.�T>�1@��J%T����8�\��������j*��O�e��3��H�,w�[ �W�r��I���(f�&��d�z}����I�>���}% ���&��${o�w��\�(\�����Ռ�\���,}�HFrh�" 3"CVgP�Ntv��� e�(����K<�0̷~+Q���!�T����/�m��!�� �$�S�T��L&ٙ�M�����}��H���D�|�E"U)��D�=���)ybG����H5��(� p���� �%����Թ���f�bh���P�Yh|�� A���T�D�J�T��\�m��3�]������C���KSI�cX�<�)���ג]�q;�6�顈���Fq4M@�d�Ѐ_���@a��ʗ��,�,A6u��[rF�?w��Y��^s�(�츾G�c���sP슎hq�ɀ�S��pJ�%4������˝rϺh&��lҔ1�����z5�&7�-�Ȑݢ�u�;6�R�5yE��Tu2t�r�-�M�`�f�Y+�j6H�sa�g�l���m�Ӥ���yCí|_#��Rʠю ��n���e�i��4MV0MBGd@����N�V��9ѽ���`�仞XG��ן��+�������Eۨ�/uG��[B}�k��n�bsi�D0ERT �vd�P�厵 .|x���ѣ5{9|�pu�G}���T��m?�яV�D7=�RݘL������ ��wb/�n�oA�/�Um�֔1 �XAE�F�dd��/�s4b���Ar�E��V<�뎊�@��)WLsH�@A颲���6M$)d�6p�Ҽ_&�ՐW k�1�;�ڮ*�wg� �łj �_���8��1 -�5��^"�lO�)��|?�����ʗk��}�5� �!��u�b� xKxś��jK�U G�p� ��p8��:�#|�V�e�dC!A�#7���7z��Hs� |���R ��GUD(#9�������2���6��TȤ`˩B�RQ���dU��J� �4���.
�gΛ��t<'?����� [2b����$.KME�-YyeK��@�;��"d�\/M.��A��)�w�"`��t#�L2�M���(I�s�d>Kr�C����L!��g|�jV�ۮ�Vp�������D.���l(J[d�n�PΛ�w����=�;�a���N.f�ZN�ɺ�ӱ�F����qׅ'�De�i�3���q-7��kWA�v�l�y0,��>� .��i��d�@�6��e�fD��:�0+�A;! 6���]c��\���4�Wr�RG�jѫN�l�c`����J��Ȑ�f�� b�<�R���|J�g��t- uww�ٳ�_��_��_~d��c��ł�s�XC��DݹӁ�)�L a�!����g��!���ϣ�o��?�$.�I�&&m6=��K��%?�a��|�u�%�q�{$�' �R��K��r2��$:��^�����acX�$�a=��yek5�����&V"N54��z�b�A� �t�G��z_f�`v��b��)&��e��ξRM�e��0��`�7���,�p�2���q;�f��� �̺��\�,24�W�&S�p:g ��x��1���˵��?Rw�8߾㵹5{����_ i:�v]Ǡ[���k�5a[�G�=|f���jn��~b�3'���[VC��t�ؘQ?�94n��2�A��y�k ���L�?d�н��3�A���S+��������t+XSs����)��������Y�lMC)e�hG� xd7�ܱ ���05i ��S�/�]����N���R��<8�g°h[���`Glv��r��Z<�H�2y4ڑ!C�d7k�.��O��^�z�z�|p[^��&"�I���6# ���t�(��3"f��e�Gkʸ=�VfIzM���f�T*X�?�i�&���*�j�g9�L�����C� ܄5�z� ��&���2�$��e��ZS�tƸ͗��ʅm��::i�,&T��&��]s��L@!�ĭ^�z�~�y]�tƚ7�=j���3n�= {e��3x�T�n��{3�*���m��4� C!0*���pI�D0VF*b�@�"��Ov�?Z��έ7%}��QȒM�H )'�!��/�j\��B�%ZA��bv��*�(����F�<�������7��c�1��e��1�����!9ź��cP?�m����ɦX`����$�!�* �6���t䊅I�S1}�/���.��־QF|�T$���~|Qȅ����Vj�"\N��[a�I�q�kfE��j����d>��E�d�d,�t:5NJɯ�4��]��lD�=mO���&b���6�5��cn�(�/s\���+�7��~e�,8� 4��F�i����7��ո�3ܟ8��b��>���j�4wjY���C�����oo��b�V��4�o�U|y�D���k@�1Hm��d(��l;�����^� �_��Ww�}7��bsj@XӶ�� O�w��.��,!�� �*Edz��u&��P�Ԧ���]�� ��� >�M C��Vi��`2�;�y`]�J��t��*��I���n��<�Y&�g"������L�B�i�W�&<�bN��(^,x 9cU�u49E�*��& ~#�)��m�@���8d���h�c�0�PL�O�>1t��`�]�(����Y��d��n�1�-�/��i���U��!C�ޒق#BȽqv�ł54���� �g���T2���E��G�\����M��O�&q�u2Ϙ�/t�i#�'f�x����� �ج9v�����N����>=���S~���x� j&�� �LRwt�7�{U崺�j &��Y4h��2�A�l��K... k�,��u0�5�Ł ����tV���s�gfE�&=F6�9��}��������������sͣ����I�`c��q;�ܲ*Qʈ�!�C�(}���0��K�&������ �t�y�W �P�4����|s�{I���1d(̈ �j?y8�?X���D�����~��;w��L�jBX�6�� O*x��.�r�(ż *4�1�*��<�f>���4ጢޯ�"��2��L31���3I�0���H������RPe�����RS��yR�� �? k�x�O6�Sf���r%aJ*`5�?�D��!g��pZI39�b�T�9�fo��"0�t��� �f�`��Q�Z����}��O�^R��i���ڊ�����`� �4��0f��UE�Ȑ݊�,}�K�K,�ȸ�f����{�����_����1��O 8-�ҙ�8'��w�_� �f��K�Ϟ௹��}�ƾ�);'v�u] �1(v��u(}qo<����Kf ��9(0�) E��p�;ʳ��Ձ��]?rU�ؠf�� ����٥�¤��dbY�)c�_�uȮ�I�Sa����F,��#C��<Ȑ�x�������Ch02t�r}���|�, ��]ZZ�������i{j3Lӽ����O�ar�n����FL�Ȑ��l ~� �?I��1�/a �A�4Y�~�^;"e�iX[f��Y>�*g�@��矫�g�����`O%1�^��cJ�+_k�Xh�#C�/w��� ��?���2CCC-���_�b���*��bMT!O��ǭ��?\|x�oqٷ ��\��e��(Px%b3d�s������@X�Ō�-ĚR��Q��,�<���쉅�:J5ڒ�Uզ�Θ��� J�R��_.� 8�h�{��"Oæ�+.����T��;�8�y��b��|�\�,f ��yڪ{02����F!��@�ʥ�QBl�|���U�"�Q\jnrr�5% !�s��{Cr���Ĥc�pĺ�arxq�F����R���+g� 4�.;�S��ji�2��HMA�������"DZ�0��*yV�I�gփpR%*�M��A��(�4���i�qȥ�0K_��a��(fw��ۙ�M3>�(����p��ܺ+�X�LX��<�X�,�T&��٭{�*�J�H�w�ZK���·ؑ��zͮIcO�o��U�4]U�{�*�����R�yO���b��]W1h�qО�����IH�=mO�D�+�;6� .f���� |����8wv�j�t���1�!���b�����2xAv;Y6_ $I�Ld�F7�(�r����g��z@�9����y���"�fsJ$#?�/�� D�Q>��e�e���˓Z�y6��|�5��8�="�N�T��L_�$��O��A� ��N�RJT�9�|!o��&�� ��g0(y&q9�h�ge�se�)#� �����1G#L�~�yU��,��6�/�V6�0p0�3�����������9 �tXeS��[L�I[2̆�Ln 8i�$B�iB�d���n�T)_��B1�/��B(�be���1{U�KR���kl�=���S#����>56o �;��I� ����� �!��e& �m�ʷ�����A�����@��Ƚ�Z�c���U(�` �������v�����K5�${�g[��2t�R... � �O���h6�[����8��G��@10�`6d|R��{E��y�W�z�� 2��N�h�������А�+O�N�K��#�/�T�RwtT��6��}#:,8ƫ /��j���AI�WCzEʴ18o �la�k��Q"��M��;2d[2�QW �c/�X�u�4��^B��U�ʊeI�*2 l҆)F�]ڻ."7������u��k�L�C=�4 �mk�VC�9C�M���ռS�н<�%�,9'<.�;$�{^<�K2�K���~�����[��_�y�g/S0��>4����k��]5 ѵM:j<�*HK�kB}�B'���e2Ml�~�L�6��0T38 ��^[�����YQ��6�M�d���R��ue0)���,R4f�]� �+�l�s�k�zC�z�I�q�.��cM��ʬ���P�"DVY�U�nY>�]�%{d���?���:��� O�(6��3���_�X��a�)��:�)&h6���Z�n�j}��6�d��Ar@�fЩ�p˿6�N}���� B��_E��=mO���4���YO��?��Ϟ�����.<���� �#|̭�w]v���zէ�Z���Y8m ��vlpp��Z:r�H}�V�&h/��[���8����l�w�bM�R��33(����CC��b ��&8R2�T�T��D������5����X�Ʋh(� ?��T �@rfs I�1���ImE�p{��[�(O�d�"ne��j+m��Ϻ^�������.��0��|��$���Y2d���Ɏ�B舝�1�����B����7�xG�ycZߐ{G�|m��İ��vʾ|f�� ���{�}�ӣ����z� >�n�����9K��5��9�ଙ�S�o�-!�5�h ��a�#�䌈\QIUz�Ic��'M�&�zb���ۗn�����o^����?�#�f����`�Ϝ�����Z�k�2�R� 8{"r��9�'IYe� �)}�PqI�H\�5'q2F� L��a��S$��f�eB�wdȮ�hG]�� �TcM��X6@�� ݫlޒ��2�y2{�J�0`�k^-�2���U��Ꮿ�_s��<�>P��-��.���x]�MHM�vd�ЀGֺe�EG��ij����ypμkL��~���N w���=�[",������]��yK��2g��L�C5�Hf h�#C�/ȶ�mk�t:?���l���}obb�h4�|>�X|�ȑ�������g��]��]��jX��}˻i�E�{T��O�cM��� �9լFL6�_�c)d�P2 {tky��3f8%e�K�2�h�x7�^�G�̝��K��R�9a%���bQm��N[��s�#��K�n0Uas�VO|�i��3�����g�����-���5!�&bp���nͷ�Lk2lԃKj�����ҎH�]�gh�^��h��;2d7~���@v�^�����G"�]d�^e�̦de����vZ勸�I����s�a��dk���\��_ɞ�M�j� #E �`�ю ��Z5"W`��i�rk�O�]����!��/L�ږ�K... vE��8�bu+|�J�!�T �vd�P��v��`M�w������#�<�M����DQp�����5 ���k,�"�w�9�EXh��J���]Z�:��^����)Z�� ˱�6�����B�\���oݺUuU�s�~�O�}Qk �J�� ��t� ��#C�����T �a/�X�O/J�}�,!C�*�c�T)�� ��o� ��ߡ�Vm���,���M;aU��C&Y�Aڥ�k��~��[�r�A5�g��� ,�jC@��Ȑ� �l)����P�4R��rq����+o�]��g�mꗲ���֤���7ìנ��'���&�lG� %^��L�L� �����jd�^~��X,�B��Ҋ�t2�� �7Q�sG �l�;U�&�d99 .g��j_�'C B�ј ��\{����#�{%���s5D����e!�"�;�-�_�^��ϘW�,D�|sN\�I��o��,�92�*>�G���p���yp �{�:����&�ɷ��k9�ݑl��`:����N��u̚q�)�nIN�*�.umO<����t�%���R^G�֕|�ˤSP�ɣ��cj��������L���0u�����J�!8�����V�P!�$��Sv���v���MC9]�6���WD6�d�d��ܠ�� �4|%�Q�iҩ��A�S��k �q�K�M�p)mB��1��G�aM�Z�����}��ƕ@3�~�3�K���E���R�VXe�،]ע����EYHAy��jN%S?����ŷ��ڕ��;��K-o����7m��� �>��E�a'm��_�3���C=zɒF�q�Mr��%�P���:T\�I�DSW>t���J�&�"Ci���ҙl"�I�3�t&��^��8M�*��Yz/U���.�̅�O3��-��څ�I�<�d���!i)��;$��1,�m3x��f��-�g[�o��!�S�hm�x]�dS��f\}^��8�}�����ī�Kc~tC��� ~~�+o�ݹ{����9:��i�O�ٿj�>�*�S�������o��ʮ���4��~���膾���ec�ӭ��%z0��Ξ+��7Oi��}�+|��}�َ %^�}���&`v�}�ڵ��v[�顇���^���%�@��{��X��3�x g�0�������-J�)�� :�فL�j��f�+.��:q|��rjWb�Jn>��e*1�朤& ��W�o��n�Vg���h>�k�C�:r��3D8ʤ��7��u̕�o�V��I`�A��+��4�����[˵��s��e�01��-� ƣ��� 5^�����l}v�9ۏ 6�_���\��R�&�~`1J����8��2.9�D���� ��Ah+`�å���Z��� ~�ڲ�ff��}��S��l�����Ƽ� �封��XA:�T���R:jEu9i��L�W�+�ħ��}yl����(...
�LL�P2.(����A����@p�����L9�H���_e�I��qQf"2S�i �?e�^4o���h*)��`�4b�7�GR��{ W~�$d.�'FπN.�m`f �B���Ȑ��O���y� �<�2G���[���3�#�?v���}�}� ���o}�Z��C�%ͱ�E2G0K��u�5n��E��B�y �-�&�pA�OфA�n���lG�� �x!�&q�a�.�D��г�2-����U��̰��o�.Sht'�S'����չ�c��4�َ ���j�l6�%u�?����I�&�i}��Kϒݴ����)��|�8�����N3P��q=���_\�}����%�ӭ��ۅ��1,�['T�a��OjkZ�:x��ʕiU8C�T�vd�P���+�W�ă�C疳J����u�-'mu�-U��!�� ]2�W+�c>��}xHg"\��K��T�+�4F������;%� *T��m9P�|S�|S@��>Q�iR_V�0��z��I^�=�ˑ_1G8�����#LjN���ꂠt/N������� `�Ɨ�a�����ŤBz�_�����$z��=�X�(˫tBh iؐ{�,�`�-J �U�<*u�t��$SY�s�Y��_�7��2^c��=����u���j3�4��.`��4�۫�M��}f�m)��0JqI25�hgtv1�X��?��(8�4;����c̮���B� �=H&19s�oRb��cVp�"� ��{z���o9���SK�ox���w2p�c�vL5dt�`u�a�]���9���ܡ���VpZ�]�/�ᱞ�bF�H֥˙e��_36m�4��R��UM�"u��E�UU�Vv��«�>tboxĬXt������K;=�RM��q� jH5��3v����������i��������-Z�R�&0�B x�N�ȋ4�����Eq(2�f\�);g(.���u*WK��Oì��k��3]♛���-�|K���+���5��Rg�L�쟧��:/ �=�x*]˰�8L3r��z����ӗ���ׯ ~����DgM�n;S��;�z�$�/6 |�Q���{�������[��K|Y�t���T���_ �ҹ.�0F2G��_���{Id����l��~�l�e˖E����$��������������ϟ??66f����5e��<�4M0M��w!�D�۟[hr� ��L��eh�7%:���� ALbb���)Bdj(��y��I���u=�ca�������1�� V�"畜G�O�tv]���#��{�(�;LT�P��h�َ ���=N��:��c�_���a�����<4��w��}}���}W0���֡;v�?|�"����o�*�S� ��e���N�W��"�O7��{�M0�p@��Sd�\���B�0�%F�� [6pMC2;x�m� ��P�I� ]�12t{G��0�ѩ@v�X�I?��e�)t���g��7�H8t������/ix�i����E��@��������!�F�X؟����D:���lG� Mxd5Z8�2��BK`�`�E� ����ۅ�/����ׇ��������k�o��`�z$6����N����?goZJ &�c�Z�$60� �... 5�*�2`�w���v���T��b�e�bGN�I�3/Q[(� ���?e ���AQ�*b fb��t&N�M`G�'�^�A�7�Z�u>��]I@�<�*��y�z�B������=����1��v"��Lc)�$��pr�W�l�RSe�c�)'�ո�6p2�Kc���� 4�k�hrA��ƐXg�F*M74�� �g��t��p�� ��>�L��q==~'����� v+�F�\u�&���J�z��"���Ok��+����^ vH�[��j��4��g ZT%'w�����r�i�s�G���'��쑧7�g'_\�����ڥ5_m����X?S��!&�. 5|k{��G��>[�`��kc�@ ��ظd�%gBRe��`3e��^�RLZ���4�ԁ���蠙L'LEC� �pL��d4�y�W�k��4�JG�"���\z�5c����3 �]Y���o���I5�,{�M���o����яo�'�v�{���c�)��C����{I��"i*pƔ�IQ� ,�}���_m�|���^���A�| U�$Oל=�$���F�Y:Fߡ���4����_�N��6�߽1��7�?�������C�ym�ӯ ��V��ף3?:�~�om�x��8]��3���}R<� ��غ��N���V���x���7��7H_�?�&=��a�����X�~����G��m* C��{�?N1����/�3��c�[����&��g�[�d��E^�*(J����i�&R�饗^*���ɓ$�~r���}>�裰C���^!Gj�X���ǚ����5kn��V�^=11�<בe��TBI�q!|��N�"���| @��c��r$���)9�(BM����&b���'�E��D���0��O�b*��$K'u�5�vg2!��t��t&bm��'�Đ�%�9�7��Q�۩�7�H� ������叝��_c�mZ!���H���� ����4ۑ!�6O�}Ѥ�hW9���[��"b�˭����[��6�Kev���y ���̡��f��0�h�5�p��T�1�T3�� �(�|;�q-/�U8`?}|Ŀ�1RX�����/��_AP��B���2��Av�Y�������!C�*�3_<:�21:�{a9/v�݁c�)�=� ��Р��,�"�)b�َ�̑� ��6�$R�@L�q k��4��Glk,���Mh��+�p��S ���TI���;q�m(���Fo J���`�bLBK X�q_4K�o��ih�#C�d�n�� x'�N���]��;\�ܝzS)آ�c[&9v��%�xU�"!`�#$Z8�u�e�6Ǖ��rzC�XO@�)�4IrL�|"VDʤ2 ι��K������� R2�4�l:� %b����<3�W�JD�(�G̚�eL*I��E` Uc�΅�=��"�%�C/��姹�|^�i�X�r�Z�L�{��B� �~�,4��+�{�z�H�� L�L�8�2�ppg<�K��$~�ا�tB��4�X�:� F\�y��$��� ět UUk7y�JP�a����G��E^ 7hQ�]��Hv5� b#m�A�;�n)���4�t��Vn8p>��Ԋ"*h�(4|�Ս���ׯ� :��o�����g�8��s'~���?���� 0��叁}�if�N���1IjiN�S�Z��h�Z�s6��iQx,*�M�1����K��=�Mk�ct`�Е�... #\X���;��Z�?*u��@I lj��=�H�0⸂����eLSk�}3U�$���'�Da�2���W�g�+�G���9����Dl��\!��-�����,S�`z[\�H ����O�m�+-�Y��G�_�<�dU����M�ـi����V����R�Y���F���/�A��բ� �Z>�������F���rFy�^�E��z���7�����f21�#C�r0����i$j.�j$gMH&)!�od�$��u�gW�T�C��z��Ɠ/���0Z�e��Z��?\ݝ�|Q��$��5U4�H.iB:����R�_������Mk�̴bB*&c:- m��Z�H��$S���7���C��NfW+g\ ���)X�E��~:VO�GӸ�=9�v�g;�R����z%V�� 4{d��'/�z9L�W�v�شERM�r���%�Ɛ֞�չG�\��,�a̬�� ay�.�����D�=Dq(2dW����=_��M���;����G�5?�cݲ��0�������a�E���Y�S䏜d|��ԏΰ^��Tw�,Dr�UiyC��"rnu,݆>�O��_��� }�죽�#�k�����;��?u����b���څg��&� \r�1z��;�_t�Ͻ1|߁ɟ����#>@�Xd�p�_��>���T%ƪ좾o�~�G �{��:"���I�Vr%�c�Cj �4��%M�\� Ni�3Z7�S�y���~�� �$60ɚ畼�k� `��r�)����<�,%k�/��x<I!�~����L�N�[�"��O �R�7�FS�����+�0H���;�\6�t��٢m���q8��6�@��ѣw�qGa��z��2�<+>2Mg��t��"���9A%�*JD^�U����@C�I��N���A�?ʑJ� ���a$�I) �L� T26[Л$e���(�hRgҾl6~�T�[9�@,��E2��0b�u������k��p�6�. 7%3i�ߑ�!o �m� *�������?��|mvp�\-��.�,�&��Ȑ]��o:K�bL�@L� ����Gz&���-|�>�����ˈ�>�W}�ʮ�{L>v���Wr�B�sl�vuL�ȬE¯|� ��㢯��+�� ד@�$2`��&5��, v��O�a�&(��.�|�QA � �ӄ �ޑ!CId7�U��&Yt�г�r�(�ݮ��u��}�Ks/ē�2*�d�$�U��v�d� Mxd�'*��F&_��cC���P����f���Lh��}p�~pJ��f�=�i��_K��+����nI�i�;k)�S��X���#�xqQ4ۑ!C�d�>x��N*±�\ܰ�h}��no)��'O�KzUY���g!�5;�T��� ~����I�i�3�t�q7N�t�"���:�h��+��$!uE ��C��^䮥"?M��JR��5E���Դ�+r(P��윬H6m�>a蕓��8���`���9h�]��Q8f�r��=�9J/�O�#��r7��>�<�3��!�������} �S;X*_�W�|*c�j���+�w�|�xГI]ߏF�t �mBm#��L2B�)7��E��g��8G��f�:�4n �gҋ�7a�n%��S?�XJӀ��rfK�$��[���+�����*�$�A�����Y��E2��ar[��㏶�.pN�D�s/��++�o��.<��0��{u�I����r�4���Dc�tK7�q�сqxB�^Ƙ�sg1��t:��Jo���M`P��9�'̦ܵ���t�kE��܆���Z��\YRi�Ts��L�����$��[v.�i���M�)�D�( תe���J��jRs���4jVt�DP� �����R�-���](Ev]�?�T8Cd���ru��Q&�G��?�c}tC5:泯��"�C;�p ���k����� �4�L�xx��B2�Mhi'�S�W��.��Hl�{��'��P�{��r�[6����?N1�m��Wu�,� ���1�h ��Q��/pV����Y��꣧K~*�Onx�4����.��g�87U�_m|mH6�q�^���jמ Տ�1p���Lk � �vJm``K�(~����Nk�T��Zbk+��!�9&��I/�1��������O(�r�-�J�u�]$����^�َ;`�rժUt�����b�.]���� ��~��j��}?�@ �����ё#G��5�l�o|���Y�&-��J��S;w�\�I��93�:�`:e"i��HSd: �@�(��_hz"8_YS�U�Hj"倦�>�����3�TB �$b�y=&|[!��-<��2���Ԁm��IW)�'��t*���QW,l�La�6�V�� �z,�qдM3h��j�E4S�AKIo� &�M��Q0�}bN\ �� ��������J`x_ρ���J�O�40X��14n�َ�^d5�r3�(�+�� �pn�G... g�{+u�� b�l�N!u��.m���c'^��3:�4�n����F�v ���g��1�0&���Yz��iQm�z�V�;�%N'�Q��Pђ�S�N[g���8G��n��.��LF)G����=�'�whZ:�&B�il\�f*�]�]{j�H��� ͪ.Z���\W���[�����"�&e��P�x��6�4��K�n�u��<� šȮ�U&� �% ��1u�I51]��S�k�?v�y�>�����Jw�;8kl Vs �٩*g���t��Obk�g�Z�1��c�����[X�}�,������ޡ��gט�֩>�����k4��6��M\p��N��V:��+]�7�r��;E֭C�GO1>���zG_~k�'���y��L9ֱ�/u����>�{�ю�h���b�Km,�t�jq�#h �Pr%^V�y�^W�|>_�����^ 7"N�����R�J8�Ç�HU,�G��Ú~��nr���Z� �ëW�.�����+k"�&E^�h��H�)BM�X$|Dz�{�m��<�d��D�YN�I�L�{�$b�����l&����D�H���R�g�LFp�+?ț $������c��t�+x�A�m��۴B�$�9�Y�,�͔�kQ��`�n_���q�[��./�\��-�h�ʿ���^���"�Ȑ�g�%�>�u�F- ��K%�����yGi*����� ͪ��o`�$�� =�#C��0���=� ^��ٜ/pz�`�F��6�t�����_�|����I�}|S����i���Թ"����ʷ�E"k �B���lG� %^�![f�%��u�fVW��u���"rD�̴LrlL�K,���J�Z8.=`�q�D�w�0���@��C5>�X�P��#��B?!C^ʼn�3j e�r ���@�t>H���E���@a̹�e<�,zU��D��_I2��#�m�bd�f�}ư����:�"]m�zD�+K6���_�`&���8�bQ��L���� e�B6�[���E�)W�\x�Vu�O��"e�L=O���%27�-�� �S߮�m���JNN H:CH) c�Cg���?=��]�R3�ܼ�}��G�f1�ƥ��G1��) �Lb�A(�S2��/$Ԛ�&`����j�F�b���'�l�:����?��ֳ:vcç���IzG�dc7��{��:;��Q����E�?���ךzR�p�I%�2���2W�,73�$���7����6 8�u�����h�A(���D���gd�����rnC������U.�}k�ۃF���������o�ԉ��T��B��P�9� �A����XG7AT ���n�8נ���f�sE4�6��ţ�)̈́�PdW�⩴�W(��9�2l����;Gg���E*Wx]��O3O3u���K<3)��&?jZ`�jX���{�Z�^�u藧���f��M�������|�2�>��r��㵴��[c��c�C��cz�4s;E� �3�u�xQ�z���ׇqݥ��c�t�$ܳ����whJ]T@��o&����|����W�]�Om�s��ܤGlc��+�5�r��%�q/p�'&���b�`�Nx#�@,���t"����e�0J�\�f0�n���o�k ���n����аB�)���U�V�<�F��/k��bw�yg�&|>��a�Y��p�Ç��$���5e3�TB�c��Cy�i4e&�rt�4��Qh��:�n�����#3y�'Y&��"��l6�I��OtX~n!��xmP�� .����9^ Dg=zI�Aڧ�;1�rb��68eV_�b��a�\aU�)6�5���9�Z�w� �...
��o0 "X(�J����]I�Zm��<9癞�=�{��s�9���������a�gvvgf��sϜ��W�^��w�~�7�&����2�E�����Θ $qdI�_{H�]� �=�3�Ui#� t�i�eD�a[[JOS�tsS� ��&��L�:إ�.���"Q`cH�dS�.ku��d}!��R>!��,��6�b�b.�_ͩ�J��9�|�,d�*���t��S� �|M.Y�on�d��akѥ�&BX�&I�C[3ߢ`�g}��ܪ@�/���Q[�8�I�|��o���R�Eη*�6߮�;�8H�2��F�KϷk�V%�,���!�COK���t��2`�a�I���5��Eǀ�h9'i��O'n� �C�m��b��*5����[�|�U�5�z�w�=��`����x��^��O�T��音K���O^����#�]�r�!���ŷ@�i�0��2��%��)\LS���==���k�7lP�ڧ�v�Th����n�_��.�,���� ���(��3������<6.��� H�rה�=��э~p�qb��3�f�(-h}K�� �Nk����AQ� xU�&����ܿxv�MO�zO�z�BZtCh;"�h��b�(��l{Z___�$��g>��\]w�k�����_��_�� �F�=����RA�MĚ��8d��i.�Tf����L��<Ҋi����;�ͦX��l�[�H[,D����1W2 �- ����ϰ�Ҧ`M��Y��;;v6]{~�g��ю�<�q��0p!� th����Ehٻ�V*�����.1�5>�Ы+d���]�#�)�B��֒3jO��q�a�9��i���g8�>D��=�7�c���<5VO`�V��� �((!uF�<��Ȑ�َ � C�*����A� ��� C�*k5k<Kzv��&ic ��-���E�?��9P���\(� �f yt���'sdh�ߔ�������4��� ���$0(u.�끦Y��G���<9���?�p��ĤbL�Z9�εd ��)�n7�(�vd�P��k�$�A(��;\��.:�T#3��t�W(����6>bS�H�^^on'�&Ѥ3�O�'�����*4��EB�I�b=��R�O +q����%g��aW��u� 哹Z�*nkK���s(/��ѳT� �<�t3,u�.��тl�IvQ�uH��_�|�]d�iz�v�f�^Ф�.���c���ۜl�d���D 8v-E����DL�-�G�ъ�V'�S�A��H�[K1�k��zy��'���n#ؒ����m�T�E|0`E��a�ЈYV'|���?�nUf������ � ̶P�p6�E}�5 ���MиM��P&)�G��V�p���>���SW�xS��Q�<�... 9�l��l�^�4e�Ԙ�����&����˙&q&1_ibV��ż���n���Պ������́�94�.����t����[i�����j�h,��Z�����6�m*��|E��Þ#�&�\���m�})�4�8Th� ��5�M�x��p�51�5%$�# ��za�qy���)8HՓu>��?�������+�u7I����l�v-��''�:D{���sZu�e<�dk�n�mH�T��4^�/1Q��Q�j�����/h�$�t~��Ѱ������&<2��� � C�ݭ)�$��#�5gb4>�гʚ�C�l�� C%�v͗�__!�݇崺� �m�����h���ܑ�'sdh�o� ��}�ޟ�M��!��?�p���(܄��^^m�f�_Ƭ��߾cz�Pۇ���MR�j<5 ���K}bǰ��;��R�><�ò,z��"��Ȑ�� 2dx�zq� d����kz��:�Cq����\<�6�~5ǯfCі��Ͼ.d P�(��E4~(�S*lB�A.�"���BulNE� gd��k�s�,ެ�hV�ZYw�Zɦ^ys�iYwQԜiz����"�`k~�ָ���d���"�3�Vg�bG�M��b�m�M�)�V � �){$������P� L�l4S*n-A�B.S��W�|�j�A)���=8�O'�ڦQJ�I*ќK��Dd�g-�-F�)�eA̛0��ȕ��6ֱE�'_Z{��ɣ'Ul�Z��V�t�f�jW��ţ��MEv��g�M�b�Me�Ņ�_��^\�)P������J3��G����w �@����%��q��9"�hzM_&�b)�+D�9"㊦-�l �@�����fj���Cɬ��Vz�����o,x�E��{��X�~�_l��I$_��W�ў={�Y�������OMM��W_���k�:A�d2����I{�I�d���NO��$��X?����{������r���t*�+oO��x�V2[4����.�a;�|�M 7��l��ko�?vY;.�Q���� 6� ���^b: m{N������C�M�����i�4�I�����O��lW��� �2i4anqK�R�_��-������\�����!�}��o���h ��1p8p��;,�_�/�/�M)?��a����� ?ԁ�B�Ϋ�,��Wh}lLv�q��vLm �Z����>�ͥJ?W�.��Od�ځ�l=kfYa�I�����2h�#C�f;2dk��(���ͮ�N=�ܟ0d�?�k2i�)��G-�N�`֎�9$��Y�3+�bfN.4�̞��@#Vx� ��-F�� �� �'|&_pDR���#sp^����jR8*�`s��yǔ�G��/a���kk�����"��� f � ��/vN(� Z�X��̾�x��4��A���5��P... ��=�����?#�G����5e������Viʥ�H�i ��Q�養��;�.�o������ �n}�����$0��&}ԏ�d��wC,�+(�1��%q��mw�Hl�������o�}�33OM*�� wa��\}�'�{ �� \K,��2�����*�_V�&�+��iX�V�4¬H;��OeJ� � �v4ۑ� 2d7�5^�e�kΧ�hp��g�v ��&��N������K��E��2}���̜C1��kIЉ�2�Г92d�5�3��SyDR{a�mD�:�2�g�U���'<��:�,�A"^�%��k|�겅b)W(Ys0)u.+Cij��z\i}X�~Up���wd�P��x �f�Mr�����8��>�2�Rz�'���P� �;1G�,�DX�C�%��� �_�k��E��D��5 $i� [�M�lЫڝ!ZU����B��ছ%� ���l���b�4�!⨴r��jr�m�!)s(��U�,�`���ƛn��q�I� �c�3tj?�� 3��2M�1)ؾȕ���b~��WK6� _:_�Y�8U�QT�&��1����5M��p��Q��Ձt����Օ�awnk+�l�'�b!� � j�*�j�:4��&�Q����2�`fR�P�4�U�a!�4MK�p�ժhՎ��sc�&Eϳq� �1d�ѭ��;PȤ��b>�b�[s����H*wʰ��X�IQ�J E��9�՛�,���\k�<���^�G�-\;ʴ�����Os~?&?�dfTR��Ӣ�7�� ˜ݫI& I�縖����Gn�����ԍ�����I��qN��}t��e ,�C��N��6| �%ĵ���;���5�XwH��<�l�:>�_sc {˩T�6��Bq�~�#C�/7��qL�4�Ǯ�@ �7kv�}���3>>�f���������-�Yk���yO� ?����Q*6�R��=9�%�b4i,iRTD�����k�j�#�}ӥ'�.��~e�chhkcM��6d�ª�K��&�-��"�m��\�<� �v�����N��.3������/��[aA��� �|�UX��u��u?�ҕVQU6�+�Iy"w, E5�a�kG$�J�� �... �d�* �Q�eL�i$q$�g}Տ/e��+U]`�t�n��և�.|���S���4��bLKxr9ߴR��6 � �=}ˊ<�w�h���:���ٿ��^�\[K�ih� !)�3L� ܑ+��S�6�(�x��Z?�Yњ��=�=_T�,8 ��+��z9}����&4��SSM����in�d*Ud�/HH(��tet)X�;���>�m۶�#=��</�R���`�hDxD�}��i�8?�OO��i*��0��s�����V+���b�4lS��#6��Oo����'��c(@r�JN�8%�.ؔ�\CV��U�o����g �}���oW�]Z hXe�v�KC��>3?h_YR�|�xМ �SQw&ȥ"�L��˖��J�}ɑ���U@2_2��`��Ծ�қ�{РyÍo��N��j�����/��d��)X2�%-\r���x,Y@#_��+�= � ��\�S�A����"Sڥ�>xV�\�R�pw�L������F; � ��B��P(.^�x���W_}�ԩSCCC\.���\�(=_�p�7�8~���s�Tj ؚϡ#�T@T���*XE�1���,�{�=�tPAm�`!�o�s�/ؔ�!�^������Į��GB3s$�� x��f�Ď�����:~>���E�;�`������nB�#qMj�Uve�D(���q�՚%������!�1�C��w=:��:�_>�cZ�bWlZ �[��c(]F5����; � ]�j�xՃ���ؓ�-���͉��� GN���cN9��y�0�2�� 8]�h&������.�F3m`��j%�FŚ2$�����Dh;/gd��A6��dS�V�RJ;��daJ9G��L@4)e���U�NQe �J@^/�K�ϻ�wŢ�%��+�0Hv��f�v�lÚ��~={`���� ��`%l7�?� �Eؾn�������^&猘{J�9����a��w)�#w�>3�fƹ$��.T�\_�V���4�F�=ЅuK�s����^��c��[����37����Ӈ�c��.~�>Lp[�f��F[*r�z�_3�j����I.)b����w���DS3!��ɣ&���5����\ �)�q��t�.�)����\�t^ ��bW�H�%�P�3vKzH����w�;x���E�^�*��ԯܩ�+�k0���u�Z��Lj�� w8�� �X�L@J�Jo�hof����<9�g���;�������>�\��eZ�SZ���3(� �<�2��ӈ�K3����;�gt�yϮ���*w״vr9Ԝ�u�a�����kr�/2�r0U�E��F�k� �9}\�.�����7�|~�yڱ&"xb �'TX�T�&C���4}*{���s�b^\*(�0i��� LQ�C��J���I&٪�˳�� 4�p����>6�үP\�1�T\�c�X�Ӕ��.���$l�1�jܡ�tj�]Z���[O��2��a�BS��!t���\ �`��ϕK�j... �Vvg6Ղ��l C�)���2�D3L��\��*�>J�x���og��:?����I9�����j�A6Y��MIw�G�+��8���;L9��u;d�<��s-�OZ��@Q�O�9����)jW�dn �$<��%n�Q�,0����K�Ab��K�HL���Rj�"�4:���L�Z>q���Bg,��>4��cf�{��|Ǚ�e�ng�(c�Y �-�G<�b�j���f�R!q�9#�:���\�|Q�aYT�:vd���P!�-O<+e�G1�P��S0/fS�6����Y�8�$_�8����U�������N��z�&��e�W��xj�JrY�s�&�u|�b� ���4Z�mb[`\S'�h ��n }`1�9��]8B���H��:5S�T5 �i�`�^f[o�3���ʻvN����S�_]Ta['5�����q����5��ڷf�k�#:�@�FU>���;��V�Q�����ώ'��)d�R7��-�_L4XU[�#* ���֜>0��g� ˽�Z?�"/�ˮ�R�P� �v�(���\.�ɓ'�m���/~��;��[>��O��x�����-����`M�����`�$��q~��i���/dD��R�rk���h �,�{�ˊ9.����י�����O��C�6�&������� ���y�AԨ��}���ʐM.�F* �v�i�eS$A�*�����xДYS{*�J�=��?� 6L�r��EB��MXw�pP7�R��_�^0����F`���:�C{��4s�`nX�WV]r�*U[��% �`�*rԗ�R�J�Q��HHh�#!� RW�V��>���7�����K��P(l۶��n��N��e/q��\@�\��\���(� 9��x)�)��+m��7��>����м�������5Njd�9���M���� iI�B���C��������~`����ypX~sɽ\[�F�5�Q&鰤�9���^�ۻ�Z�����E�C�*�)�0�d�:�$E%�$�Id҄�>ޑ�P� �C�żx�-���JB}�Q�#J!L�[��� 0gV.�E�cM�QY���"�5�j�/݊�r�����R�>3آ��*��L �8���dn�dױ��S�U�*�JrI1n��0�[���-V�܈{B��[�t��lj0Vv+n�DU�/ʥ8��7%ݭ�TP�R`�a�'莋���mG@}R��$�� �$�V�2g�L���<�F��ǨL��ƕӅJس��hI�\��b�4�ibK�7._5��WϿ��C'�=:H�[ ��z�@zc�U��:�8��H�����t�M�{�O<�����s}u�t�"rM9�p|N:5�x����F���nf^�U �p�$����Q�j�/�"�� �Y!;�6h�1 �>�J ����p��h)܀ o��h.�6R�'��I:qqG:@����%�Ś@o�ƕ��+��|׀3ಪ,ЏIꦛC�3��M�J���ݴ��#����u�)�Z�l�˞DN�d�G6Ȳ�E�-��D<��N(����/HH[1�ӎ5��&" B/df�陨���LS���B�Y�s�KI��R^^� YV����e٥��V�UT���QG��Ý���:�����H7��,�69,<���&�T8����B.Y̧K�l���g��X��1 C�"$� �� g... �&����4I5�s8��y~�{��� ����{v�J?�{���qi�vѡ>�X|� Q͍�5����?��4�*�B,�e�ۊf�u�]�VJ� |PT+�l�AcX��yq�|�t���ۨQ��Y 3U-�{\�&q[��BŬ�t��ܷ&��J���#����иr%�RL�j�*�����Z������ n*��H:�O東�9���SЀi�&r��C��sA�=�ֵ;4��>����&�~��ff��R)R�i�E���)�q�g�ݸ��_���x>Շ������e Q�94� �S�.���6(w�L��G��1-��űEN ��P��I�_죬7 ��;���_ƶF(D�h�v�q6x��|9�/Ų�p�L|ɼ;�sD��H�J�)�?ޅ�e�,*���r4��Roe�U������P��xGBB��kF7�|����r�-��n� O3�T��a�#?q~��i���[*��9n�̚0`�V�6鮁�t ��*�Ѫ闼�����RN��ib�,�i�� �dL����ay4/BB��˩�4��e�R����ǻg�� ���9\�/B�[�'֭h�����F; � ]=����щ'6��X,v�w4�?33��!�r��{�i>�СC[-� 8��ABs�f��I؍�\�ve�Y2bSB?�O\<�^#��@�o��� ����L�GHhf���l�m��9}���4��s���p���,ni�0�d7��@X�=���`�(Ƕ"�4��-C��0l�H�� �"��w$$xAB�:�"=��Ֆb߫�p�t5l�h�b&nʍb�+{ �j�N$e�p�����F�&m1dž�O�,��TJ�Z ��)�t�˪��%�f)�?�6�Ԃ-V�(�ߺ3�?*`����*�Z-�Ke<ɸ6�6��iJ�"`c֛Z�����NOQ�_�2NRi � �k ��ϐ�92m�N�cig�!"p'���n%�z���4p�`�?^xe�@�����'�Dl���g���.��gV+��,��T�W���u>3���ِ�\���=��i��U7Z�)��Jul*���lrɫ?��Iz�a�$�.-���S�����Z��38)�M�=��;�s�s�X�����Qg0�tj�F�T�h2],a*�4Z���H-�,a�9�`��I�L�Qxd���Q����/P7�����Ff�g�G)��L�a�4�U��v�h�yF������ݳ�� � Y�c�I�q��4�K�6(�x�_�Lk�SZ���7� ���0�9c)������e����{V���^d)<�b@��ɀ�:3�P��� $�/WZ7�e���>���4cM�J� �E����4E��P��KE!3�[5ѕJɅ�국�j" 9H��E���kY����SDe� ,�/:�0|dN��a�м �.���<\����^6����'��#��C�+q�3��`���s�� x$$4ڑ�P��2�h46D_���Z...
People Also Search
- Optimizing Deep Learning with Learning Rate Schedulers
- Understanding PyTorch Learning Rate Scheduling - GeeksforGeeks
- A Gentle Introduction to Learning Rate Schedulers
- How to Choose the Right Learning Rate in Deep Learning (with ... - Medium
- Mastering Learning Rate Schedules in Deep Learning Training
- Revisiting Learning Rate Control - arXiv.org
- Optimizing Deep Learning Model Convergence with Adaptive Learning Rate ...
- 12.11. Learning Rate Scheduling — Dive into Deep Learning 1.0.3 ... - D2L
- Optimizing Model Performance with Learning Rate Schedulers
- How Learning Rate Scheduling Can Improve Model Convergence and Accuracy
Sarah Lee AI Generated Llama-4-Maverick-17B-128E-Instruct-FP8 8 Min Read · June
Sarah Lee AI generated Llama-4-Maverick-17B-128E-Instruct-FP8 8 min read · June 14, 2025 Deep learning models have revolutionized the field of artificial intelligence, achieving state-of-the-art results in various tasks such as image classification, natural language processing, and speech recognition. However, training these models can be a challenging task, requiring careful tuning of hyperparame...
The Learning Rate Determines The Step Size Of Each Update
The learning rate determines the step size of each update in the gradient descent algorithm, and adjusting it can significantly impact the convergence of the model. In this section, we will discuss how to implement learning rate schedulers in popular deep learning frameworks such as PyTorch, TensorFlow, and Keras. PyTorch provides a variety of learning rate schedulers through its torch.optim.lr_sc...
Its Dynamic Computational Graph And User-friendly Interface Have Solidified Its
Its dynamic computational graph and user-friendly interface have solidified its position as a preferred framework for developing neural networks. As we delve into the nuances of model training, one essential aspect that demands meticulous attention is the learning rate. To navigate the fluctuating terrains of optimization effectively, PyTorch introduces a potent ally—the learning rate scheduler. T...
Its Flexibility And Dynamic Nature Make It Particularly Well-suited For
Its flexibility and dynamic nature make it particularly well-suited for research and experimentation, allowing practitioners to iterate swiftly and explore innovative approaches in the ever-evolving field of artificial intelligence. At the heart of effective model training lies the learning rate—a hyperparameter crucial for controlling the step size during optimization. PyTorch provides a sophisti...
The Versatility Of The Scheduler Is Reflected In Its Ability
The versatility of the scheduler is reflected in its ability to accommodate various parameters, allowing practitioners to tailor its behavior to meet specific training requirements. The importance of learning rate schedulers becomes evident when considering the dynamic nature of model training. As models traverse complex loss landscapes, a fixed learning rate may hinder convergence or cause oversh...