Pdf Learningrateschedulers

Leo Migdal
-
pdf learningrateschedulers

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs. A Gentle Introduction to Learning Rate SchedulersImage by Author | ChatGPT

Ever wondered why your neural network seems to get stuck during training, or why it starts strong but fails to reach its full potential? The culprit might be your learning rate – arguably one of the most important hyperparameters in machine learning. While a fixed learning rate can work, it often leads to suboptimal results. Learning rate schedulers offer a more dynamic approach by automatically adjusting the learning rate during training. In this article, you’ll discover five popular learning rate schedulers through clear visualizations and hands-on examples. You’ll learn when to use each scheduler, see their behavior patterns, and understand how they can improve your model’s performance.

We’ll start with the basics, explore sklearn’s approach versus deep learning requirements, then move to practical implementation using the MNIST dataset. By the end, you’ll have both the theoretical understanding and practical code to start using learning rate schedulers in your own projects. Imagine you’re hiking down a mountain in thick fog, trying to reach the valley. The learning rate is like your step size – take steps too large, and you might overshoot the valley or bounce between mountainsides. Take steps too small, and you’ll move painfully slowly, possibly getting stuck on a ledge before reaching the bottom. So far we primarily focused on optimization algorithms for how to update the weight vectors rather than on the rate at which they are being updated.

Nonetheless, adjusting the learning rate is often just as important as the actual algorithm. There are a number of aspects to consider: Most obviously the magnitude of the learning rate matters. If it is too large, optimization diverges, if it is too small, it takes too long to train or we end up with a suboptimal result. We saw previously that the condition number of the problem matters (see e.g., Section 12.6 for details). Intuitively it is the ratio of the amount of change in the least sensitive direction vs.

the most sensitive one. Secondly, the rate of decay is just as important. If the learning rate remains large we may simply end up bouncing around the minimum and thus not reach optimality. Section 12.5 discussed this in some detail and we analyzed performance guarantees in Section 12.4. In short, we want the rate to decay, but probably more slowly than \(\mathcal{O}(t^{-\frac{1}{2}})\) which would be a good choice for convex problems. Another aspect that is equally important is initialization.

This pertains both to how the parameters are set initially (review Section 5.4 for details) and also how they evolve initially. This goes under the moniker of warmup, i.e., how rapidly we start moving towards the solution initially. Large steps in the beginning might not be beneficial, in particular since the initial set of parameters is random. The initial update directions might be quite meaningless, too. Lastly, there are a number of optimization variants that perform cyclical learning rate adjustment. This is beyond the scope of the current chapter.

We recommend the reader to review details in Izmailov et al. (2018), e.g., how to obtain better solutions by averaging over an entire path of parameters. Researchers generally agree that neural network models are difficult to train. One of the biggest issues is the large number of hyperparameters to specify and optimize. The list goes on, including the number of hidden layers, activation functions, optimizers, learning rate, and regularization. Tuning these hyperparameters can significantly improve neural network models.

For us, as data scientists, building neural network models is about solving an optimization problem. We want to find the minima (global or sometimes local) of the objective function by gradient-based methods, such as gradient descent. Of all the gradient descent hyperparameters, the learning rate is one of the most critical ones for good model performance. In this article, we will explore this parameter and explain why scheduling our learning rate during model training is crucial. Moving from there, we’ll see how to schedule learning rates by implementing and using various schedulers in Keras. We will then create experiments in neptune.ai to compare how these schedulers perform.

What is the learning rate, and what does it do to a neural network? The learning rate (or step size) is explained as the magnitude of change/update to model weights during the backpropagation training process. As a configurable hyperparameter, the learning rate is usually specified as a positive value less than 1.0. arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

People Also Search

ArXivLabs Is A Framework That Allows Collaborators To Develop And

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add v...

Ever Wondered Why Your Neural Network Seems To Get Stuck

Ever wondered why your neural network seems to get stuck during training, or why it starts strong but fails to reach its full potential? The culprit might be your learning rate – arguably one of the most important hyperparameters in machine learning. While a fixed learning rate can work, it often leads to suboptimal results. Learning rate schedulers offer a more dynamic approach by automatically a...

We’ll Start With The Basics, Explore Sklearn’s Approach Versus Deep

We’ll start with the basics, explore sklearn’s approach versus deep learning requirements, then move to practical implementation using the MNIST dataset. By the end, you’ll have both the theoretical understanding and practical code to start using learning rate schedulers in your own projects. Imagine you’re hiking down a mountain in thick fog, trying to reach the valley. The learning rate is like ...

Nonetheless, Adjusting The Learning Rate Is Often Just As Important

Nonetheless, adjusting the learning rate is often just as important as the actual algorithm. There are a number of aspects to consider: Most obviously the magnitude of the learning rate matters. If it is too large, optimization diverges, if it is too small, it takes too long to train or we end up with a suboptimal result. We saw previously that the condition number of the problem matters (see e.g....

The Most Sensitive One. Secondly, The Rate Of Decay Is

the most sensitive one. Secondly, the rate of decay is just as important. If the learning rate remains large we may simply end up bouncing around the minimum and thus not reach optimality. Section 12.5 discussed this in some detail and we analyzed performance guarantees in Section 12.4. In short, we want the rate to decay, but probably more slowly than \(\mathcal{O}(t^{-\frac{1}{2}})\) which would...